The (1 −E)-transform in combinatorial Hopf algebras
نویسندگان
چکیده
We extend to several combinatorial Hopf algebras the endomorphism of symmetric functions sending the first power-sum to zero and leaving the other ones invariant. As a “transformation of alphabets”, this is the (1 − E)-transform, where E is the “exponential alphabet,” whose elementary symmetric functions are en = 1 n! . In the case of noncommutative symmetric functions, we recover Schocker’s idempotents for derangement numbers (Schocker, Discrete Math. 269:239–248, 2003). From these idempotents, we construct subalgebras of the descent algebras analogous to the peak algebras and study their representation theory. The case of WQSym leads to similar subalgebras of the Solomon–Tits algebras. In FQSym, the study of the transformation boils down to a simple solution of the Tsetlin library in the uniform case.
منابع مشابه
The # Product in Combinatorial Hopf Algebras
We show that the #-product of binary trees introduced by Aval and Viennot [1] is in fact defined at the level of the free associative algebra, and can be extended to most of the classical combinatorial Hopf algebras.
متن کاملMultigraded combinatorial Hopf algebras and refinements of odd and even subalgebras
We develop a theory of multigraded (i.e., N-graded) combinatorial Hopf algebras modeled on the theory of graded combinatorial Hopf algebras developed by Aguiar et al. (Compos. Math. 142:1–30, 2006). In particular we introduce the notion of canonical k-odd and k-even subalgebras associated with any multigraded combinatorial Hopf algebra, extending simultaneously the work of Aguiar et al. and Ehr...
متن کاملCombinatorial Hopf Algebras of Simplicial Complexes
We consider a Hopf algebra of simplicial complexes and provide a cancellation-free formula for its antipode. We then obtain a family of combinatorial Hopf algebras by defining a family of characters on this Hopf algebra. The characters of these combinatorial Hopf algebras give rise to symmetric functions that encode information about colorings of simplicial complexes and their f -vectors. We al...
متن کاملCombinatorial Hopf Algebras and Generalized Dehn-sommerville Relations
A combinatorial Hopf algebra is a graded connected Hopf algebra over a field k equipped with a character (multiplicative linear functional) ζ : H → k. We show that the terminal object in the category of combinatorial Hopf algebras is the algebra QSym of quasi-symmetric functions; this explains the ubiquity of quasi-symmetric functions as generating functions in combinatorics. We illustrate this...
متن کامل